r - Find quantiles of gamma like distribution -
the data gamma distributed.
to replicate data this:
a) first find distrib. parameters of true data:
fitdist(datag, "gamma", optim.method="nelder-mead")
b) use parameters shape, rate, scale simulate data:
data <- rgamma(10000, shape=0.6, rate=4.8, scale=1/4.8)
to find quantiles using qgamma function in r, just:
edit:
qgamma(c(seq(1,0.1,by=-0.1)), shape=0.6, rate =4.8, scale = 1/4.8, log = false)
how can find quantiles true data (not simulated rgamma)?
please note quantile r function returns desired quantiles of true data (datag) these understand assuming data distributed. can see not.
quantile(datag, seq(0,1, by=0.1), type=7)
what function in r use or otherwise how obtain statistically quantiles highly skewed data?
in addition, make sense somewhat? still not getting lower values!
fn <- ecdf(datag) fn(seq(0.1,1,by=0.1))
quantiles returned "q" functions, in case qgamma
. data eyeball integration suggests of data left of 0.2 , if ask 0.8 quantile see 80% of data in estimated distribution left of:
qgamma(.8, shape=0.6, rate=4.8) #[1] 0.20604
seems agree have plotted. if wanted 0.8 quantile in sample have, just:
quantile(datag, 0.8)
Comments
Post a Comment